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IS THE ECONOMY LIKE THE WEATHER?
INFLATION, NONLINEARITY AND THE MATHEMATICS OF CHAOS
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How should the recent'instability of oil prices be understood? By analogy to fluid
dynamics, erratic prices could be seen as "economic turbulence." The mathematics
currently used to model turbulence, chaos theory, is shown to be relevant to price
theory. BEven the simplest supply-demand interactions may become chaotic, in the
presence of nonlinear price adjustment processes. In more complete economic

models, speculative or other destabilizing behavior may lead to complex chaotic
patterns. For econometric forecasting, chaos would imply that failures of prediction
are inevitable. For policymakers, chaotic price movements would require new

regulatory approaches.

1. INTRODUCTION

Do market prices tend toward a stable equili-
brium? Conventional econcmic theory, backed by
impressive mathematical models, assures us that
the answer is normally "yes", with few qualifi-
cations or hesitations.

Yet some important prices, such as the price

of petroleum, have appeared quite volatile

over the last decade. The instability of oil
prices has had disastrous effects on oil-
using sectors of the economy. In many cases
the problem is not that oil prices are too

high or too low, but rather that they are never
stable.

In the auto industry, for example, the 1973-74
0il crisis caused a consumer stampede toward
smaller cars. But just as the manufacturers
finished the expensive process of retooling to
make small carsg, the real price of oil dropped.
So during 1975-78, big cars and vans were back

in demand; result, another expensive retooling.

Then the second o0il crisis of 1979-80 caused a
panicked switch back to small cars - followed
again by oil glut and drift back toward bigger
cars over the last few years. Literally
billions of dollars have been wasted, and
hundreds of thousands of labor-years idled, as
the auto industry has tried to respond to the
shifting signals of the market.

How should such instability be understood in
theory? Oil price jumps are often viewed as
exogenous shocks, caused by the events of
Middle Eastern politics. But this is too
simple. The Middle East is unfortunately the
scene of a continuous flow of political crises.
Why didn't the Israeli invasion of Lebanon in
1982, and all the other crises, cause oil
shocks? The answer is the OPEC oil ministers
know that they can only get away with big
price hikes at times of high and rising demand.
Such times came in 1973 and again in 1979,

but clearly not in 1982.

But this is to say that even OPEC oil price
determination is in large part rational profit-
maximizing behavior - which should be
endogenous in a comprehensive theory of the
inflationary process.

This paper is an exploration into the theory of
unstable prices. Part 2 compares price theory
and fluid dynamics and suggests the possibility
of "economic turbulence."” The mathematics
currently used in studies of turbulence, chaos
theory, is introduced in Part 3. An example of
chaos in elementary price theory is presented
in Part 4. Part 5 surveys the more complex
patterns which appear in higher-dimensional
chaotic models, and Part 6 discusses the
dilemmas which chaos poses for econometric
forecasting and for regulatory policy.

2. MECHANICS, HISTORY OR METEOROLOGY?

Where should we look for the mathematics of
unstable prices? Three analogies may be
contrasted, comparing price movements to
mechanics, history, or fluid dynamics.

Starting with the earliest mathematical models,
a century ago, it has often been assumed that
price movements are analogous to a mechanical
process: like billiard balls on a flat surface
or planets orbiting the sun, prices are thought
to move in precise, predictable paths. A study
by Mirowski details the importance of a very
explicit, mechanical analogy in the writings of
Walras, Jevons and Fisher ﬁﬂ. Mathematically,
mechanical models involve linear differential
equations, which have satisfyingly simple,
stable phase portraits under a wide variety of
assumptions.

But in physics, the existence of mechanical
laws of motion seems to be confirmed by the
predictive power of such laws. In economics,



156 F. Ackerman

despite the mathematical sophistication of
current theories, the ability to predict price
movements in advance remains rather minimal.

In response, institutionalists, and likely most
of the general public, view economic events in
historical, rather than mechanical, terms.
While important generalizations can be made
about prices, these generalizations are so
embedded in political, social and institutional
forces that they do not allow useful mathemati-
cal formulation. This may be thought of as a
"null hypothesis" for the entire project of
mathematical modelling.

A third approach, neither historical nor
mechanical, can also be suggested. It is
implicit in the very language of economists, in
the common statement that resources flow to new
uses in response to price changes. If the
economy is usually in equilibrium, as many
models assume, then the characteristics of the
resource flows are unimportant. But if, for
whatever reason, the world is out of equili-
brium for long periods of time, then analysis
of the market cannot be based on the nature of
a never-reached equilibrium. What must be
examined, instead, is the nature of the ongcing
flow, the constant movement of resources in
response to changing price signals.

&hus the third analogy: 1is economics analogous
to fluid dynamics? The study of aerodynamics
and hydrodynamics (which are very similar) has
produced extensive analysis of flow problems;
can some of it be used in economics? One
crucial question, in particular, is the
distinction between smooth and turbulent flow.
Turbulence means eddies, swirls, or rapids in

a stream. It happens in air as well as water;
a flag on a flagpole flaps in the wind because
of turbulence in the air gwirling around the
flagpole. Is the auto industry flapping in the
wind of turbulent oil prices?

More broadly, the most important turbulent
real-world system is the weather. The
turbulence analogy, then, suggests that the
economy should be thought of as resembling the
weather. Neither history nor mechanics, but
rather meteorology, may be the discipline to
which economics should be compared.

3. CHAOS THEORY

Understanding turbulence is one of the great
unsolved problems in mathematical physics
today. The basic equations of motion for a
fluid, the Navier-Stokes equations, have been
known for over a century. When the Reynolds
number of a fluid (roughly the ratio of
velocity to viscosity) is low enough, there
are unique, smooth solutions to these
equations (for instance, see [ﬂ , pp. 30-31).

As the Reynolds number is increased, however,
even under laboratory conditions, the transi-
tion from smooth to turbulent flow does not

always come at the same point. Moreover, the
patterns of swirls and disturbances created,

after the very early stages of turbulence at

least, do not remain the same from one trial

to the next. Gross, visible features of the

flow seem to depend on uncontrollably slight

variations in initial conditions.

Over the past ten years it has become common to
accept the hypothesis that the unruly behavior
of turbulence reflects the existence of
"chaotic" solutions to the eqguations of motion.
Chaotic solutions are ones which wander around
erratically; they do not converge toward
stationary or periodic time paths, nor do they
diverge toward infinity. Instead they bounce
around in a bounded but utterly aperiodic
manner which cannot be described by any
familiar mathematical functions.

The mathematics of chaos crops up elsewhere in
the natural sciences as well. The other most
important area is in biological population
studies, where difference equations describing
the year-to-year changes in an animal
population sometimes have chaotic solutionsBﬂ.
Chaos has also been detected in chemical
reactions, lasers, electrical circuits, and
perhaps even in the erratic reversals, every
few million years or so, of the earth's
magnetic field[3]. These are not stochastic
processes; they are not displaying intrinsic
indeterminacy in the manner of quantum
mechanics. Each step of a chaotic process is
governed by a deterministic egquation of
motion, yet the result is a time path that
"looks" stochastic.

Chaotic solutions do not appear in linear
systems of differential or difference
equations; the solutions to linear systems
are well-known and well-behaved. Either they
converge to a stable equilibrium, display
periodic oscillation, or diverge. But some of
the simplest nonlinear systems can lead to
chaos. The most extensively studied case is
the difference egquation

(1) X = axt(l—xt)

t+1
{in which it is assumed that 1<£a £4 and
0 (XO <1, since outside those ranges x
heads rapidly for either 0 oxr - <O .)

Certainly (1) is among the simplest possible
nonlinear systems. And for low enough values
of the parameter a, it has correspondingly
simple dynamics. As long as a is between 1
and 3, x converges toward a unique stationary
solution, regardless of the initial value.
For any a between 3 and about 3.57, x
converges toward a periodic solution; however,
as a rises the period of the stable solution
increases, approaching infinity as a
approaches 3.57.

As a passes beyond 3.57, equation (1) enters
the realm of chaos. Slight variations in a
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or x_ often produce large gualitative changes
in the time path of x. For any value of a
greater than about 3.83, there are periodic
points of period k (that is, values of x. which
first repeat themselves k time periods later)
for every positive integer k; and there are an
uncountable number of initial values which are
not periodic points, and which lead to time
paths that do not converge toward any periodic
solution [7, 8].

This result is not specific to equation (1);
many similar nonlinear difference equations,
including some that occur in biological
population models, have similar dynamics. In
general, any difference‘equation e .= f(xt)’
with f continuous, which ever produces

four consecutive values satisfying

(2) Xpyo? Kegl” X 2% ys

(or the opposite condition, with all inequality
signs reversed) will exhibit the kind of chaos
found in (1) when a? 3.83: points of period k
for every integer k, and an uncountable number
of paths which are not even asymptotically
periodic. The article which proved this result
[7] is titled "Period Three Implies Chaos",
since any periodic solution to a single
difference equation with period 3 must satisfy
either condition (2) or its opposite.

In one of the first uses of chaos theory in
economics, Day has shown the Solow's
neoclassical growth equation can be doctored

a bit to produce the symptoms of condition (2},
and hence to exhibit chaotic growth paths. He
also demonstrates graphically how a tiny (0.1%)
variation in initial conditions can cause Jross
difference in qualitative behavior within 20

to 30 time periods [Z].

P
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Figure 1. Supply and demand curves. (No econom-
ic meaning is attached to the extension of the
supply curve to negative quantities; however,
the value of q ., is used in the text below.)
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Yet Day's model seems difficult to apply to the
real world. He suggests that the time period of
his model should be thought of as a generation
([2], p. 409). Thus the mathematically
interesting behavior shown in his graphs after
20 to 30 time periods will presumably occur
after 20 to 30 generations, provided that all
else remains equal.

4, FROM COBWEBS TO CHAOS
Day's model, and the few other published

examples of chaos in economics, seem somewhat
esoteric. Yet a simple example will show that

.chaos can occur in the core of economic theory,

in the supply and demand for a single product.
Consider the time-honored supply and demand
curves (Figure 1). What dynamic behavior can
they lead to?

If both supply and demand respond immediately
to disequilibrium, then the dynamics are
trivial. Any normal-looking supply and demand
curves produce immediate convergence to
equilibrium, and the market can change only
when the curves shift.

But suppose that demands reacts immediately,
while supply adjustments happen with a one-
period lag. Think of the product as petroleum,
and assume that oil producers will sell any
quantity desired, but will adjust prices in
response to last period's sales. Letting pg
and q, represent price and quantity at time t,
and s(.) and d(.) the supply-price and demand-
price adjustment functions, the market
relations can be expressed as

1]

(3a) p. = sldpy)

(3b) p, = d(qt)

or, since d is invertible,

(3¢) q = a Y@ N
t t-1

Economic theory has very little to say about
the exact functional forms of s and d. The
traditional approach takes the Taylor series
expansion of s and d at G, the equilibrium -
and assumes that all terms above the first
order can be ignored [10]. Then equations (3)
become

(4a) Py = SO + S19¢.1
(4b) Py = dO - dlqt
or, eliminating p, as in equations (3),
de - So s1
(4c) gt = ————= —= = Gkl
dy dy

(where s , s_, 4, dl are positive constants
from theOTay}or Series expansions of s and d).

Equation (4c) generates the standard cobweb
cycle. Its behavior is determined by the
value of ¢ = slél’ the ratio of the slopes of
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s and d at §. There are three possibilities:

i) if ¢{3, q, converges to qQ;

ii} if ¢ = 1, there are periodic solutions
of period 2; and

iii) if ey 1, g {and pt) diverge farther
and farther from equilibrium Sver time.

Of these possibilities, iii) seems obviously
unrealistic, and ii) occurs only for one highly
improbable exact parameter value. So it is
easy to infer that i) is the normal state of
affairs. Mathematical theory alone appears to
lead to an empirically significant conclusion -
the only plausible alternative is that the
market is stable and converges to equilibrium.

The same three alternatives, and the same
plausibility argument, apply to much more
complex linear systems as well. As long as all
the equations are linear, a system of
differential oxr difference equations leads
either to divergence, which is unrealistic as
an econcmic model; to periodic oscillation,
which occurs only for improbable parameter
values; or to convergence. A sleight-of-hand
trick has made the possibility of instability
vanish before our eyes - the card we were
watching is suddenly no longer on the table.

"It is not hard to explain this particular magic
trick. The card was palmed and whisked away
when the higher-order terms of the Taylor series
expansions were discarded, and the general
equations (3) became the linear equations (4).
This linear approximation can be justified only
if the analysis is confined to very small
fluctuations around equilibrium, or if the true
functional forms of s and d in (3) are very
close to linearity. Neither condition applies
to the market for petroleum: supply and demand
clearly fluctuate far from equilibrium, and
significant nonlinearities are visible in OPEC's
supply behavior. The same is true, if less
dramatically, in other real-world markets.

Suppose, then, that the supply curve is
nonlinear, and that just one more term of the
Taylor series must be included to obtain a
useful approximation. That is, the supply curve
is closer to being a parabola, as drawn in
Figure 1, than it is to a straight line. 1In
this case equations (3) become

2
(5a) P = 5, + S19¢-1 + S2(qt—l)
5b =4 -4d
(5b) Py 0 1%
or, as before,
d. - s s
o o 1 Sy
(5¢) 9t= ———— — == 9t-1 - —(gs_1)2
dl dl d1 9t l)

(where the constants are defined as before, and
S, will be positive whenever qTin in Figure 1 is
negative; note that s. is no longer the slope
of the supply curve).

Equation (5c¢) can be converted into the form of

equation (i) by a linear transformation, 9 =
ux_ + v, for suitably chosen constants u and v.
Such a linear transformation does not alter the
qualitative phase portrait of the system:
convergence to a stationary or periodic
solution, chaos, or divergence are all
preserved by linear changes of variables. Thus
(5¢), the nonlinear cobweb equation, can
display the full range of bizarre behavior

discovered in (1). When (5¢) is transformed
into (1), the critical parameter a of (1)
becomes

N(s1+d1 ¥ + bgy(dg - 5g)
S

(6a) a= 1+

Let ¢ again mean the ratio of the slopes of s
and 4 at g (which is no longer equal to s,/47) .
Then both of the following expressions are
equivalent to (6a):

(6b) a=2+c
(6c) a = 252(q —qmin)/dl

Using (6b), and the description of the solu-
tions to (1) presented above, the behavior of
(5¢) may be summarized as follows:

i) if ¢<1 (that is, if a<3), q
converges to q;

ii) if 1 £ c€1.57, q,_ converges to a
stable periodic solution;

iii) if 1.57 £ c £ 2, there are
bounded, chaotic solutions;

iv) if ¢H»2(a4), qt diverges to

oo -

This is more complex than the dynamics of (4c),
the linear cobweb equation; the results are
the same only when ¢ 1 or ¢ 2. For ¢
between 1 and 2, the linear approximation
predicts divergence, while the inclusion of
one nonlinear term reveals the possibility of
either stable cycles or chaotic fluctuations.

While (6b) facilitates comparison with the
linear approximation, (6c) may help to
visualize the economic conditions which lead
to instability. The greater the curvature of
the supply curve (bigger 52), and the greater
the price-elasticity of demand (smaller d. )},
the more unstable the market will be. (The
other factor, T - , 1s harder to interpret.)
And in fact, the market for petroleum has
turned out to have more nonlinearity of supply
and more price-elasticity of demand than
anyone would have guessed in pre-energy-crisis
days.

5. "DIMENSION THREE PERMITS CHAOS"

Most interesting economic behavior requires
more complex models, which cannot be reduced to
a single equation like (3c). And the analysis
of nonlinear multiple-equation models is very
difficult. The appealing "period three implies
chaos" theorem is quite specific to the single-
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equation case; counter-examples to it can be
created in models with two variables and two
difference equations. Yet although the simplic-
ity of condition (2) is lost, chaotic solutions
are actually more abundant in multiple-

equation models.

In one of the few multiple~equation chaotic
models in economics, Benhabib and Day have
shown that chaos can ensue when consumers
exhibit "tricyclic" preferences: the activities
preferred in the first and second time periods
do not overlap, but the activities preferred

in the third period include all those chosen in
the preceding two periods [1]. A person on
vacation might play tennis on the first day,
read on the couch and recover from tennis on
the second day, but do either on the third. In
general, tricyclic preferences do not seem
realistic; they appear to have been tailored
to fit a particular mathematical theorem, a
too-narrow generalization of "period three
implies chaos" to multiple-equation systems.

A better generalization of "period three implies
chaos" 1is available; it suggests somewhat
broader economic applications. Let X_ be an n-
dimensional vector, and consider the equation
(7) Kpyy = F(X)

If F is differentiable and has an equilibrium
vector Z = F(Z), then (7) has chaotic solutions
near Z whenever both of the following hold:

i) The equilibrium at Z is locally
unstable; that is, any slight disturbance in Z
leads to a time path which initially moves
further away from Z. Mathematically, all
eigenvalues of the Jacobian of F have absolute
value greater than 1 in a neighborhood of Z;
and

ii) A time path from some nearby point
eventually returns to Z. Mathematically, there
is an X near Z and a positive integer m such
that Fm?X ) = 2, and the Jacobian of FM has
nonzero déterminant at XO.

In summary, any system of difference equations
is chaotic in the neighborhood of a reachable
but locally unstable equilibrium. For reasons
which are not at all immediately cleax, these
conditions are said to reduce to "period three
implies chaos" in the one~dimensional case [6].

Are these conditions economically realistic?
Notice that speculative behavior creates local
instability of the type called for in the
theorem. If individuals and firms expect
present rates of change, rather than present
levels, of prices to persist, they will behave
in a manner which will amplify any price
fluctuations. (This phenomenon is discussed,
in a different mathematical framework, in the
recent literature on "price bubbles.")

Destabilizing speculation is involved in the
auto/oil problem, as outlined above. The panic-

stricken demand for small cars at times of oil
crisis is not rational if the current price of
gasoline is expected to continue. It may,
however, be rational if current rates of change
in prices are extrapolated into the future.

And the more that people act as if price
increases will continue, the more it will come
true.

Thus far the discussion of chaos has dealt with
discrete-time, difference equation models. 1In
continuous-time models, chaotic solutions
cannot occur with only one or two differential
équations. However, in a system of three or
more nonlinear differential equations chaos
becomes possible. This does not reduce the
importance of chaos: physical turbulence, for
example, is a three-~dimensional phenomenon,
requiring at least three equations; and
interesting economic problems generally involve
at least three interdependent variables.

The fact that, in continuous-time models,
"dimension three permits chaos" may have far-
reaching implications for current economic
theories. Many economists formulate models
involving an indeterminate large number, n, of
commodities or actors; then, for the sake of
simplicity, the implications of the model are
worked out for the special case of n = 2. The
appeal of two-dimensional models is obvious:

on a plane, graphs can be drawn, tangency
conditions can be examined, phase diagrams can
be created, etc. But this simplification
assumes away one of the most interesting
possibilities of instability. A mathematics
text often cited by economic theorists
emphasizes that there are powerful two-
dimensional stability theorems with no higher -
dimensional analogues ( [5] , pp. 239-240, 314.)

6. BUTTERFLIES AND ECONOMETRICS

Chaotic time paths are sensitively dependent on
initial conditions, so that the inevitable tiny
errors in empirical data may cause major errors
in any estimates based on the data. This has
become known as the "butterfly problem" in
theories of meteorology: even if all the
initial conditions for weather prediction were
known with absolute certainty, a butterfly
fluttering its wings could create new air
currents and thus upset all long-range fore-
casts. In other words, long-range prediction
is impossible in the realm of chaos. So, too,
is estimation of parameters from chaotic time
series data.

Suppose that the underlying dynamics of the
economy are chaotic. What would that imply
for econometric forecasting? 1In the short run,
the estimates would not look too bad; almost
anything, even chaos, can be approximated with
a linear model in the short run. Despite the
butterfly problem, forecasts of tomorrow's
weather are quite often accurate. 1In the
longer run, linear approximations to chaotic
patterns will always diverge, requiring ad hoc
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readjustments which then again allow reasonable
predictions for a while. Since chaos is often
more volatile than solutions to linear
equations, the linear approximations will miss
particularly often in predicting turning points.

In ghort. linear approximations to chaotic
prceesses would produce roughly the pattern of
problems which econometric forecasting models
of the U.S. economy have today. The hypothesis
that chaos exists in the world would imply

that the forecasting failures are fundamental
and incurable. No matter how often a model is
corrected to take account of last year's errors,
it is bound to fail again.

Returning to the choice of analogies presented
to Part . - mechanics, meteorology or history -
the search for mathematical laws of motion in

a volatile market economy may lead to one of
two problematical alternatives. "Mechanical,"
usually linear, models offer definite,
describable, nonchaotic solutions - at the cost
of having to explain many, perhaps increasingly
many, fluctuations as external, "historical™
shocks. On the other hand, "meteorological"
models offer simple, endogenous, deterministic
explanations of erratic volatility - at the
cost of being unable to estimate the parameters
of the models from empirical data.

In the natural sciences, the discovery of

chaos in a model is often taken as a sign that
detailed analysis is impossible at the level of
abstraction. A frequent response is to "jump
up" to a higher level and study the long-run
average behavior of the chaotic process.

For some purposes, such as understanding £fluids
moving through a pipeline, or the ecology of
animal populations, long-run averages may be
quite useful. But in understanding both the
economy and the weather, we are stuck with the
intrinsic importance of events on a human time
scale {"real time," as they say in the computer
business). We are forced to remain interested
in next month's thunderstorms and next year's
0il prices, and gain little information from
twenty-year averages of rainfall or (as Keynes
observed) from "long run" economic outcomes.

In conclusion, some speculation about the policy
implications of chaotic prices may be in order.
As explained in the introduction, the volatility
of oil prices is costly to the auto industry

and other oil-dependent sectors of the economy.
This free-market volatility cannot be described
as "efficient" in any meaningful sense of the
term. So it appears at first glance that
controlling prices at almost any level would be
preferable to uncontrolled fluctuation. The
auto industry could adjust to high oil prices
and small cars, or to low oil prices and big
cars, so long as it is known which it will be
for several years in a row.

But aside from the political obstacles to

controlling oil prices, it would be difficult
to guess the correct price in advance. A wrong
guess would lead to a mounting shortage or
surplus, and to the collapse of controls.

A more modest approach might concentrate on
simply smoothing the erratic time path of
prices. Limits could be placed on the allow-
able rate of change of oil prices in either
direction - similar to the "dirty float™ in
the European currency system, for example.
Whether this or another approach is adopted,
chaotic price fluctuation suggests that some-
thing is wrong with the market mechanism, and
calls for creative rethinking of regulatory
strategy.
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